Long-term continuous monitoring of methane emissions at an oil and gas facility using a multi-open-path laser dispersion spectrometer, Rutger IJzermans, Matthew Jones, Damien Weidmann, Bas van de Kerkhof, and David Randell, Scientific Reports 14, 623, 2024, doi: 10.1038/s41598-023-50081-9
A near-infrared laser dispersion spectrometer with phase modulation for open-path methane sensing, Thomas E. Wall, Neil A. Macleod, and Damien Weidmann, Rev. Sci. Instrum. 95, 024502, 2024, doi: 10.1063/5.0170281
The Scout 1 – CubeMAP Mission: an agile development for an innovative Payload, W. Glastre, A. Hoffmann, M. Pastena, D. Weidmann, J.-P. Lejault, Proceedings Volume 12777, International Conference on Space Optics — ICSO 2022, 2023, doi: 10.1117/12.2688823
Locating and Quantifying Methane Emissions by Inverse Analysis of Path-Integrated Concentration Data Using a Markov-Chain Monte Carlo Approach, Damien Weidmann, Bill Hirst, Matthew Jones, Rutger Ijzermans, David Randell, Neil Macleod, Arun Kannath, Johnny Chu, and Marcella Dean, ACS Earth and Space Chemistry 6 (9), 2190-2198, 2022, doi: 10.1021/acsearthspacechem.2c00093
Broadband gas phase absorber detection and quantification by chirped laser dispersion spectroscopy at 1.55 µm, Neil A. Macleod, Peter G. Huggard, Manju Henry, and Damien Weidmann, Opt. Lett. 47, 3139-3142, 2022. doi: 10.1364/OL.460768
Trace gas analysis with laser dispersion spectroscopy, Damien Weidmann, Richard Kovacich, Robert Gibbs, Oliver Williams and Sophie Purser, Emerging Topics in Life Sciences, 5 (5), 717–723, 2021. doi: 10.1042/ETLS20210105
Atmospheric trace gas measurements using laser heterodyne spectroscopy, Damien Weidmann, in “Advances in Spectroscopic Monitoring of the Atmosphere”, W. Chen, D.S. Venables, M.W. Sigrist (Eds), pages 159-223, Elsevier, 2021. doi: 10.1016/B978-0-12-815014-6.00005-1
Hollow waveguide-miniaturized quantum cascade laser heterodyne spectro-radiometer, Iain Robinson, Helen L. Butcher, Neil A. Macleod, and Damien Weidmann, Optics Express 29, Issue 2, 2299-2308, 2021. doi: 10.1364/OE.415371
Methane Emissions: Remote Mapping and Source Quantification Using an Open‐Path Laser Dispersion Spectrometer, Bill Hirst, David Randell, Matthew Jones, Johnny Chu, Arun Kannath, Neil Macleod, Marcella Dean, Damien Weidmann, Geophysical Research Letters, 47, e2019GL086725, 2020. doi: 10.1029/2019GL086725
Cubesats for monitoring atmospheric processes (CubeMAP): a constellation mission to study the middle atmosphere, Damien Weidmann, Kelly Antonini, Daniel Martinez Pino, Bertel K. Brodersen, Gayatri Patel, Michaela I. Hegglin, Christopher Sioris, William Bell, Kazuyuki Miyazaki, Lars K. Alminde, Antonio Gabriele, Massimiliano Pastena, Alex Hoffmann, Proc. SPIE 11530, Sensors, Systems, and Next-Generation Satellites XXIV, 115300U (20 September 2020); doi: 10.1117/12.2573727
Intercomparison of low and high resolution infrared spectrometers for ground-based solar remote sensing measurements of total column concentrations of CO2, CH4 and CO, Mahesh Kumar Sha, Martine De Mazière, Justus Notholt, Thomas Blumenstock, Huilin Chen, Angelika Dehn, David W T Griffith, Frank Hase, Pauli Heikkinen, Christian Hermans, Alex Hoffmann, Marko Huebner, Nicholas Jones, Rigel Kivi, Bavo Langerock, Christof Petri, Francis Scolas, Qiansi Tu, and Damien Weidmann, Atmos. Meas. Tech., 13, 4791–4839, 2020, doi: 10.5194/amt-13-4791-2020
Hollow waveguide integrated laser spectrometer for 13CO2/12CO2 analysis, Iain Robinson, Helen L. Butcher, Neil A. Macleod, and Damien Weidmann, Optics Express 27, 24, 35670-35688, 2019, doi: 10.1364/OE.27.035670
Evaluation of laser heterodyne radiometry for numerical weather prediction applications, Fiona Smith, Stephan Havemann, Alex Hoffmann, William Bell, Damien Weidmann, Stuart Newman, Q J R Meteorol Soc., 1–20, 2018, doi: 10.1002/qj.3365
Spectrally resolved thermal emission of atmospheric gases measured by laser heterodyne spectrometry, Alex Hoffmann, Marko Huebner, Neil Macleod, Damien Weidmann, Optics Letters, 43, 16, 2018, doi: 10.1364/OL.43.003810
Ultrafast laser-inscribed mid-infrared evanescent field directional couplers in GeAsSe chalcogenide glass, Helen L. Butcher, David G. Maclachlan, David Lee, Robert R.Thomson, Damien Weidmann, OSA Continuum, 1, 1, 221, 2018, doi: 10.1364/OSAC.1.000221
Demonstration and characterization of ultrafast laser-inscribed mid-infrared waveguides in chalcogenide glass IG2, Helen L. Butcher, David G. Maclachlan, David Lee, Robert R.Thomson, Damien Weidmann, Optics Express, 8, 26, 10930, 2018, doi: 10.1364/OE.26.010930
Ultrafast laser-inscribed mid-infrared transmission gratings in IG2: modelling and high-resolution spectral characterization, Helen Butcher, D. Lee, R. Brownsword, D.G. MacLachlan, R.R. Thomson, and D. Weidmann, Optics Express, 8, 1, 33617, 2018, doi: 10.1364/OE.25.033617
Ultrafast laser-inscribed waveguides in IG2 chalcogenide glass for mid-infrared photonics applications, Helen L. Butcher, David G. MacLachlan, David Lee, Robert R. Thomson, Damien Weidmann, Proc. SPIE 10535, Integrated Optics: Devices, Materials, and Technologies XXII, 1053514 (23 February 2018); doi: 10.1117/12.2288333
Mid-infrared volume diffraction gratings in IG2 chalcogenide glass: fabrication, characterization, and theoretical verification, Helen L. Butcher, David G. MacLachlan, David Lee, Richard A. Brownsword, Robert R. Thomson, Damien Weidmann, Proc. SPIE 10528, Optical Components and Materials XV, 105280R (22 February 2018); doi: 10.1117/12.2288357
The Methane Isotopologues by Solar Occultation (MISO) Nanosatellite Mission: Spectral Channel Optimization and Early Performance Analysis, Damien Weidmann, Alex Hoffmann, Neil Macleod, Kevin Middleton, Joe Kurtz, Simon Barraclough, and Doug Griffin, Remote Sens. 2017, 9, 1073, doi: 10.3390/rs9101073
Thermal infrared laser heterodyne spectroradiometry for solar occultation atmospheric CO2 measurements, Alex Hoffmann, Neil A. Macleod, Marko Huebner, and Damien Weidmann, Atmos. Meas. Tech., 9, 5975–5996, 2016, doi: 10.5194/amt-9-5975-2016
Mid-Infrared transmission gratings in chalcogenide glass manufactured using ultrafast laser inscription, David Lee, David G. MacLachlan, Helen L. Butcher, Richard A. Brownsword, Damien Weidmann, Colin R. Cunningham, H. Schnetler, Robert R. Thomson, Proc. of SPIE Vol. 9912, 99122X (2016), doi: 10.1117/12.2232531
The water vapour continuum in near-infrared windows – Current understanding and prospects for its inclusion in spectroscopic databases, Keith P. Shine, Alain Campargue, Didier Mondelain, Robert A. McPheat, Igor V. Ptashnik, Damien Weidmann, Journal of Molecular Spectroscopy 327, 193-208 (2016), http://dx.doi.org/10.1016/j.jms.2016.04.011
High sensitivity stand-off detection and quantification of chemical mixtures using an Active Coherent Laser Spectrometer (ACLaS), Neil A. Macleod and Damien Weidmann, Proc. of SPIE Vol. 9824, 98240B (2016), doi: 10.1117/12.2223045
Intensities and self-broadening coefficients of the strongest water vapour lines in the 2.7 and 6.25 micron absorption bands, Igor V. Ptashnik, R. McPheat, O.L. Polyansky, K.P. Shine, K.M. Smith, J Quant Spectrosc Radiat Transf, doi: 10.1016/j.jqsrt.2016.02.001
Broadband standoff detection of large molecules by mid-infrared active coherent laser spectrometry, Neil A. Macleod, Francisco Molero, and Damien Weidmann, OPTICS EXPRESS, Vol. 23, No. 2, 912 (2015), doi:10.1364/OE.23.000912
Immediate biofeedback for energy balance via expired breath δ(13)CO2, Butz D.E., Weidmann D., Brownsword R., Cook M.E., Schoeller D.A., Whigham L.D., Proc IEEE Eng Med Biol Soc. 2015, 8205-8, doi: 10.1109/EMBC.2015.7320299
Analysis and demonstration of atmospheric methane monitoring by mid-infrared open-path chirped laser dispersion spectroscopy, Nart S. Daghestani, Richard Brownsword, and Damien Weidmann, Optics Express 22, S7, 1731-1743 (2014), doi: 10.1364/OE.22.0A1731
Recommended isolated-line profile for representing high-resolution spectroscopic transitions, J. Tennyson, P.F. Bernath, A. Campargue, A.G. Császár, L. Daumont, R.R. Gamache, J.T. Hodges, D. Lisak, O.V. Naumenko, L.S. Rothman, H. Tran, N.F. Zobov, J. Buldyreva, C.D. Boone, M. Domenica De Vizia, L. Gianfrani, J.-M. Hartmann, R. McPheat, D. Weidmann, J. Murray, N. Hoa Ngo, O.L. Polyanskye, Pure Appl. Chem. 86, 12, 1931–1943 (2014), doi: 10.1515/pac-2014-0208
Pump and probe spectroscopy with continuous wave quantum cascade lasers, J.M.R. Kirkbride, S.K. Causier, A.R. Dalton, D. Weidmann, G.A.D. Ritchie, The journal of chemical physics 140, 054311 (2014), http://dx.doi.org/10.1063/1.4864001
Middle infrared active coherent laser spectrometer for standoff detection of chemicals, N.A. Macleod, R. Rose, D. Weidmann, Optics Letters, 38, 19, 3708-3711 (2013), doi: 10.1364/OL.38.003708
Waveguide-enhanced 2D-IR spectroscopy in the gas phase, G.M. Greetham, I.P. Clark, D. Weidmann, M.N.R. Ashfold, A.J. Orr-Ewing, M. Towrie, Optics Letters, 38, 18, 3596-3599 (2013), doi: 10.1364/OL.38.003596
Linear cavity optical-feedback cavity-enhanced absorption spectroscopy with a quantum cascade laser, A.G.V. Bergin, G. Hancock, G.A.D. Ritchie, D. Weidmann, Optics Letters, 38, 14, 2475-2477 (2013), doi: 10.1364/OL.38.002475
Coherent transient spectroscopy with continuous wave quantum cascade lasers, J. M. R. Kirkbride, S. K. Causier, E. A. McCormack, D Weidmann and G. A. D. Ritchie, Physical Chemistry Chemical Physics, 15, 2684-2691 (2013), doi: 10.1039/c2cp44116k
Sub-Doppler spectroscopy with external cavity quantum cascade laser, R.J. Walker, J. Kirkbride, J.H. van Helden, D. Weidmann, G.A.D. Ritchie, Applied Physics B, 112, 159-167 (2013), doi: 10.1007/s00340-013-5410-9
Intracavity widely-tunable quantum cascade laser spectrometer, R.A. Brownsword and D. Weidmann, Optics Express, 21, 2, 1581-1592 (2013), doi: 10.1364/OE.21.001581
Atmospheric vertical profiles of O3, N2O, CH4, CCl2F2, and H2O retrieved from external-cavity quantum-cascade laser heterodyne radiometer measurements, T.R. Tsai, R.A. Rose, D. Weidmann, G. Wysocki, Applied Optics, 51, 36, 8779-8792 (2012), doi: 10.1364/AO.51.008779
Chirped laser dispersion spectroscopy with harmonic detection of molecular spectra, M. Nikodem, D. Weidmann, G. Wysocki, Applied Physics B 109, 477-483 (2012), doi: 10.1007/s00340-012-5060-3
Population transfer and rapid passage effects in a low pressure gas using a continuous wave quantum cascade laser, E. A. McCormack, H. S. Lowth, M. T. Bell, D. Weidmann, and G. A. D. Ritchie, J. Chem. Phys. 137, 034306 (2012), doi: 10.1063/1.4734020
Signal-to-noise ratio in chirped laser dispersion spectroscopy, M. Nikodem, D. Weidmann, C. Smith, G. Wysocki, Optics Express 20, 1, 644-653 (2012), doi: 10.1364/OE.20.000644
Concentration measurements of complex mixtures of broadband absorbers by widely tunable optical parametric oscillator laser spectroscopy, K. Ruxton, N.A. Macleod, D. Weidmann, G.P.A. Malcolm, G.T. Maker, Proc. of SPIE Vol. 8537 85370I-1 (2012), doi: 10.1117/12.971184
Active coherent laser spectrometer for remote detection and identification of chemicals, N.A. Macleod, D. Weidmann, Proc. of SPIE Vol. 8546 85460H-1 (2012), doi: 10.1117/12.974521
Signal-to-noise ratio in chirped laser dispersion spectroscopy, M. Nikodem, D. Weidmann, C. Smith, G. Wysocki, Optics Express 20, 1, 644-653 (2012), doi: 10.1364/OE.20.000644
Water vapour foreign continuum absorption in near infrared windows from laboratory measurements, I.V. Ptashnik, R.A. McPheat, K.P Shine, K.M. Smith, R.G. Williams, Phil Trans Roy Soc A 370, 2557-2577, 2012, doi: 10.1098/rsta.2011.0218
Rapid passage signals from a vibrationally excited target molecule: a pump and probe experiment with continuous wave quantum cascade lasers, R.J. Walker, J.H. van Helden, J. Kirkbride, E.A. McCormack, M.T. Bell, D. Weidmann, G.A.D. Ritchie, Optics Letters, 36, 24, 4725-4727 (2011), doi: 10.1364/OL.36.004725
Atmospheric observations of multiple molecular species using ultra-high-resolution external cavity quantum cascade laser heterodyne radiometry, D. Weidmann, T. Tsai, N.A. Macleod, G. Wysocki, Optics Letters, 36, 11, 1951-1953 (2011), doi: 10.1364/OL.36.001951
Hollow waveguide photomixing for quantum cascade laser heterodyne spectro-radiometry, D. Weidmann, B.J. Perrett, N.A. Macleod, R.M. Jenkins, Optics Express 19, 10, 9074-9085 (2011), doi: 10.1364/OE.19.009074
Water vapour continuum absorption in near-infrared windows derived from laboratory measurements, I.V. Ptashnik, R.A. McPheat, K.P. Shine, K.M. Smith, R.G. Williams, J Geophys Res 116, D16305, 2011, doi: 10.1029/2011JD015603
Molecular dispersion spectroscopy for chemical sensing using chirped mid infrared quantum cascade laser, G. Wysocki, D. Weidmann, Optics Express 18, 25, 26123-26140 (2010), doi: 10.1364/OE.18.026123
Applications of mid infrared quantum cascade lasers to spectroscopy, G. Hancock, G.A.D. Ritchie, J.P. van Helden, R.J. Walker, D. Weidmann, Optical Engineering 49, 11, 111121 (2010), doi: 10.1117/1.3498770
Remote mid-infrared sensing using Chirped Laser Dispersion Spectroscopy, M. Nikodem, C. Smith, D. Weidmann, G. Wysocki, Proc. of SPIE Vol. 8024 80240F-1 (2010), doi: 10.1117/12.883598
High-resolution broadband (>100 cm-1) infrared heterodyne spectro-radiometry using an external cavity quantum cascade laser, Damien Weidmann, Gerard Wysocki, 17, 1, 248, 2009, doi: 10.1364/OE.17.000248
Laboratory measurements of the water vapor continuum in the 1200 cm-1 – 8000 cm-1 region between 293 K and 351 K, D.J. Paynter, I.V. Ptashnik, K.P. Shine, K.M Smith, R. McPheat, R.G. Williams, J Geophys Res 114, D21301, 2009, doi: 10.1029/2008JD011355
Ground-based prototype quantum cascade laser heterodyne radiometer for atmospheric studies, D. Weidmann, W. J. Reburn, and K. M. Smith, REVIEW OF SCIENTIFIC INSTRUMENTS 78, 073107, 2007, doi: 10.1063/1.2753141
Experimental investigation of high-frequency noise and optical feedback effects using a 9.7 µm continuous-wave distributed-feedback quantum-cascade laser, Damien Weidmann, Kevin Smith, and Brian Ellison, Applied optics, 46, 6, 947, 2007, doi: 10.1364/AO.46.000947
Retrieval of atmospheric ozone profiles from an infrared quantum cascade laser heterodyne radiometer: results and analysis, Damien Weidmann, William J. Reburn, and Kevin M. Smith, APPLIED OPTICS, 46, 29, 7162, 2007, doi: 10.1364/AO.46.007162
Water dimer absorption between 3100 and 4400 cm-1 in near-atmospheric conditions, D.J. Paynter, I.V. Ptashnik, K.P. Shine, K.M. Smith, Geophys Res Letters 34, L12808, 2007, doi: 10.1029/2007GL029259